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Abstract
Load balance is critical for performance in large parallel applica-
tions. An imbalance on today’s fastest supercomputers can force
hundreds of thousands of cores to idle, and on future exascale ma-
chines this cost will increase over a thousand fold. Rectifying im-
balance requires detailed understanding of the amount of computa-
tional load per process and an application’s simulated domain, but
no existing algorithms sufficiently account for both factors. Load
balancers are either a) integrated into applications ad hoc, making
implicit assumptions about the load, or b) oblivious to application
semantics and unable to make informed rebalancing decisions.

We present a novel application-independent load model that
also captures application topology, load, and execution time. De-
velopers use abstract work units to inform our model of their load
metrics. Using this abstraction, we develop a cost model for load
imbalance. We show that our model can be used both to select
the most effective load metrics for particular applications and to
compare the effectiveness of load balancing algorithms in particu-
lar imbalance scenarios. Our results show that failing to rebalance
can slow execution 2.15 times, and that choosing the wrong load
balancing algorithm can make execution 2.17 times slower.

1. Introduction
Optimizing high-performance physical simulations to run on ever-
growing supercomputing hardware is challenging. The largest
modern parallel simulation codes are written using synchronous
message passing frameworks such as MPI, and dynamic behav-
ior in such applications may lead to imbalances in computational
load among processors. Even a single slow task can force all oth-
ers to wait. On modern machines with hundreds of thousands or
more processors, this cost can be enormous. Future machines will
support even more parallel tasks, and efficiently redistributing and
balancing load among them will be critical for good performance.

Prior work has explored tools to measure large-scale computa-
tional load [16, 32] efficiently. These tools can provide insight into
the source location that caused an imbalance [31] and into the dis-
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tribution of the load, but this knowledge alone is not sufficient to
correct the load. Existing load measurements do not account for
constraints on rebalancing imposed by the topology of the simu-
lated physical domain. Real physical applications may only be able
to rebalance load by moving simulated entities between nearby pro-
cessors. Because this requires knowledge of application topology,
load metrics that consider only MPI ranks or statistical metrics are
unable to guide the correction of the imbalance. As a result, many
applications resort to custom load balancing schemes and build
their own model of the application workload to guide the assign-
ment of work to processes. In these custom schemes, application
developers estimate the costs of the computation, but their esti-
mates typically capture only the developer’s best guess and often
do not correspond to the actual computational costs.

To address this challenge, we develop an abstract computational
load model and novel load metrics that account for application
topology and connectivity between processes. We identify a set of
metrics to evaluate the accuracy of our model, and we use our load
model to evaluate the cost of correcting a load imbalance with par-
ticular load balancing algorithms. We demonstrate this methodol-
ogy on two large-scale production applications: a molecular dy-
namics code and a dislocation dynamics simulation. We use this
model to compare load balancing methods and to select the method
that most efficiently balances a particular application state.

Specifically, we make the following contributions:

• A novel application-independent load model that captures an
application’s topology, load, and execution time;
• A methodology to evaluate load imbalance and the efficiency

with which particular load balance schemes correct it;
• Techniques to evaluate application-provided models and to

compare candidate application models;
• An extensive evaluation of load balance characteristics and

models for two large-scale production simulations;
• A cost model to evaluate available balancing mechanisms and to

select the one most efficient for a particular imbalance scenario.

Our experiments show that ad hoc application models can mis-
predict load imbalance by as much as 70%, misrepresenting load
distribution and the cost of rebalancing. We also show that a widely
used measure of load imbalance, the ratio of maximum load to aver-
age load, along with other statistical metrics, inaccurately represent
load distributions in the context of balancing algorithms, because
they do not consider the application topology. Alternatively, our
models provide insight into the cost of different algorithms such as
diffusion [10] and repartitioning [26]. We validate our cost models
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and demonstrate that failing to rebalance can lengthen execution by
a factor of 2.15, while choosing the wrong load balancing algorithm
can make runtime 2.17 times longer.

The remainder of this paper is organized as follows. We give an
overview of our method in Section 2 and demonstrate the shortfalls
of current load metrics in Section 3. We define our topology-
aware application-independent load model in Section 4 and our
cost model for load balancing algorithms in Section 5. We describe
our target applications and their balancing algorithms in Section 6.
We evaluate application models and demonstrate how to use our
load model to select the appropriate load balancing algorithm in
Section 7.

2. Overview of Approach
High-performance physical simulations need guidance on when
and how to balance their computational load. Existing load metrics
have focused on measuring load on processes over time and on
tracing load imbalances to particular regions of application source
code. While these tools are useful for locating imbalances, they
cannot be used to estimate the cost of load balancing because the
speed with which work can be redistributed depends on its layout
in the simulated domain.

This paper presents a novel load model that can be used to eval-
uate the cost of correcting an imbalance and to guide correction of
the imbalance at runtime. To guide the application on how to correct
the imbalance, our load model uses a graph to represent the applica-
tion’s topology, where application elements correspond to vertices
and edges are used to indicate dependencies or communication be-
tween elements. Our model uses existing tools’ measurements of
the degree of imbalance and adds the ability to evaluate the load in
terms of application topology. An application developer needs only
to provide an abstract graph of work units and their communica-
tions as input, and our framework will build a graph to represent
this topology in an application-independent manner. We show that
topology-awareness is essential in appropriately evaluating the im-
balance and mechanisms to correct it.

These techniques comprise a general framework for character-
izing load imbalance in large-scale applications, and they augment
existing load metrics by facilitating the evaluation of developer-
provided load estimation schemes. Thus, an application developer
can use them to refine ad hoc load models and to understand their
limitations. We demonstrate this process for two large-scale pro-
duction applications in Section 7.1. The developer can then use our
cost model approach to select from available load balancing algo-
rithms, as we show in Section 7.2.

3. Deficiencies of Conventional Load Metrics
Load imbalance is formally defined as an uneven distribution of
work, or computational load, among tasks in a parallel system.
In large-scale SPMD applications with synchronous time steps,
load balance can be costly because all processes are forced to wait
at synchronization points for the most overloaded process. The
performance penalty for such a load imbalance grows linearly as
the number of processors increases, so it is particularly important to
continuously balance large-scale synchronous simulations as their
load distribution evolves over the course of a run.

Load balance metrics are used to characterize how unevenly
work is distributed among proceses. The most commonly used load
balance metric is percent imbalance, λ:

λ =

(
Lmax

L
− 1

)
× 100% (1)

whereLmax is the maximum load on any process andL is the mean
of the loads of all processes in the job. This metric measures the per-

Table 1. Examples of load distributions and their moments

Load on each Process L λ σ g1 g2

(a)

 0

 1

 2

 3

 4

 5

 6

 7

P0 P1 P2 P3 P4 P5 P6 P7

4 0% 0 0 0

(b)

 0

 1

 2

 3

 4

 5

 6

 7

P0 P1 P2 P3 P4 P5 P6 P7

4 25% 1 1 −2

(c)

 0

 1

 2

 3

 4

 5

 6

 7

P0 P1 P2 P3 P4 P5 P6 P7

4 75% 3 1 −2

(d)

 0

 1

 2

 3

 4

 5

 6

 7

P0 P1 P2 P3 P4 P5 P6 P7

4 75% 3 1 −2

(e)

 0

 1

 2

 3

 4

 5

 6

 7

P0 P1 P2 P3 P4 P5 P6 P7

4 75% 1.5 2 1

(f)

 0

 1

 2

 3

 4

 5

 6

 7

P0 P1 P2 P3 P4 P5 P6 P7

4 75% 1.5 2 1

formance lost to imbalanced load or, conversely, the performance
that could be reclaimed by balancing the load. Percent imbalance
measures the severity of load imbalance. However, it ignores the
application’s data model, its topology, and statistical properties of
the load distribution. These properties can provide insight into how
quickly a particular algorithm can correct an imbalance.

Statistical moments can provide a more detailed picture of load
distribution. These are aggregate metrics, and they can indicate
whether a distribution features a few highly loaded outliers or many
slightly imbalanced processes. These properties directly affect the
type of balancing algorithm that will most efficiently correct the
imbalance. Small imbalances can be faster to correct with diffusive
algorithms [10] while the presence of an outlier in the load distri-
bution may require more drastic, global corrections.

We focus on the three most common statistical moments, stan-
dard deviation σ, skewness g1 and kurtosis g2:

σ =

√√√√ 1

n

n∑
i=0

(Li − L)2 (2)
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g1 =

1
n

n∑
i=0

(Li − L)3(
1
n

n∑
i=0

(Li − L)2
)3/2

(3)

g2 =

1
n

n∑
i=0

(Li − L)4(
1
n

n∑
i=0

(Li − L)2
)2 − 3 (4)

where n is the number of processes and Li is the load on the ith

process. Positive skewness means that relatively few processes have
higher than average load, while negative skewness means that rela-
tively few processes have lower than average load. A normal distri-
bution of load implies skewness of 0. Higher kurtosis means that
more of the variance arises from infrequent extreme deviations,
while lower kurtosis corresponds to frequent modestly sized de-
viations. A normal distribution has kurtosis of 0.

Statistical moments provide interesting information about load
distribution, but they are still insufficient to evaluate the speed
with which a load balance can be corrected because they do not
include information about the proximity of physical elements in
the simulation space.

Table 1 illustrates this using several load distributions for which
the statistical moments fail to distinguish key properties. For sim-
plicity, the examples show a one-dimensional topology of eight
processes P0...P7 where Pi and Pi+1 perform computation on
neighboring domains. The figure shows that load metrics cannot
distinguish cases (e) and (f), while the difficulty of correcting these
load scenarios would vary greatly in a physical simulation in which
the computation is optimal when neighboring portions of the sim-
ulated space are assigned to the neighboring processes. In case (e),
we could simply move the extra load on P1 to P0, while in (f) the
extra load from P7 would first need to displace work to P6, P5, and
so on through P1 until the underloaded P0 receives enough work.

4. Topology-Aware Load Model
The observations in Section 3 show that we require a load model
that is aware of the application’s topology in order to understand the
load imbalance present in the application and, more importantly,
how to correct it. A model that does not include the application
topology will fail to capture the critical impact of the proximity of
elements in the simulation space and the mapping of the simulation
space onto the process space. Our investigation of large-scale sci-
entific applications has driven the development of a novel topology-
aware, application-independent load model that represents the units
of work in the application and the communication and dependen-
cies between them. Our work provides a general methodology to
represent application topology and to map observed application
performance accurately to the model elements that constitute the
application units of work.

Parallel scientific applications must decompose their physical
domain into work units, which, in different applications, can be
units of the simulated physical space, particles modeled, or ran-
dom samples performed on the domain. Some work units may in-
volve more or less computation than others due to, e.g., their spatial
proximity to other work units or their location within the simulated
physical space (e.g., at its boundaries). Most load balancing algo-
rithms analyze and redistribute work using the same granularity as
the application’s domain decomposition. We use this granularity
for our load model so that it reflects load-balanced work units, their
communication and dependencies, and their mapping to processes.

1

2 3

2 5

1 2

3 2

2 1

2 1

4 2

7
1

2

2

3

1

2

Process 0 Process 1 Process 2
CompUnits = 7 CompUnits = 4 CompUnits = 5
CompWt = 16 CompWt = 8 CompWt = 16
MeasuredLoad = 11 MeasuredLoad = 5 MeasuredLoad = 10

Figure 1. Topology Aware Load Model.

Our load model expresses the application’s topology as a graph in
which the nodes are migratable units of computation within the ap-
plication with the appropriate granularity, and the edges represent
communication and/or dependencies between them.

Figure 1 illustrates our load model: the edges represent bidi-
rectional interactions between work units. Solid edges represent
interactions within a process, while dashed edges represent inter-
process communication. The relationships between application
work units within the domain decomposition provide the com-
munication structure and the relative weights of computation in the
model. Node weights indicate the computation required for each
unit of work as anticipated by the application (i.e., the application
load model). Importantly, we can correlate this information to wall-
clock measurements of the load on each process. The example in
Figure 1 shows that Process 0 has 7 work units with an application
anticipated load or relative computation weight of 16, and its work
units have 4 channels of communication with work units on Pro-
cess 1 with a total relative communication cost of 6. We measure
the load on Process 0 to be 11.

The difference in modeled load and measured load should be
carefully considered; if the model is accurate, there is a linear
relationship between the two which can be easily corrected by
scaling. If they are not directly proportional, the application model
is incomplete and could be improved. We discuss our methodology
on application model evaluation in Section 7.1.

When we are satisfied with the model accuracy, we can use the
model to compute the load distribution metrics and to observe how
the load is distributed throughout the process space in a manner
meaningful in terms of application topology.

To ensure that our model is application-independent, we use this
graph abstraction to represent application load distributions. Thus,
to use our framework, application developers must provide a map-
ping their own work units to our abstraction. To make this process
easy for application developers, we developed an API that allows
a developer to identify the application work units and the applica-
tion model of the computation as well as the communication among
work units. Application developers can easily locate the needed in-
formation because they are aware of the explicit and implicit work
that the application performs. We require the application to pro-
vide the information in the distributed compressed storage format
(CSR), which enables efficient storage of this typically very sparse
information, as well as interoperability with partitioning tools such
as ParMetis [25].

Table 2 illustrates the versatility of our model by showing work
unit mappings for three major types of scientific applications.

Unstructured Mesh. In unstructured mesh applications, each cell
in the mesh is a unit of work. We represent the mesh connectivity
with edges. In some unstructured mesh applications, the cells may
require similar computation and we would anticipate unit compu-
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Table 2. Applications and their representation in our Load Model
Type of Application, work units and connectivity Sample Application Image Representation in App. Our Representation

(a) Unstructured Mesh

• e.g., particle transport or finite element applications

• work units: cell volume or number of samples in each
cell (Monte Carlo algorithms)

• connectivity: mesh connectivity

4
5

2

3

1
2

(b) N-body

• e.g., Molecular Dynamics Applications

• work units: (sampled) molecules

• connectivity: molecules within range of interaction r
(as defined by the application) r

1

1

1

1

1

1
1

1

1

1

(c) Other - Empirical Model

• e.g., ParaDiS (Section 6.2)

• connectivity: graph of process communication

• work units: time in developer-defined ‘key’ routines
(green); incomplete coverage of application behavior
(red) main

fn1

fn2

fn3

fn4

fn5 fn6

fn7 fn8

fn9

P0

P1 P2

P3

P4

P5 P6

4.6s

2.1s 5.3s

5.1s

4.2s

4.1s 3.8s

tation per mesh cell. In others, the computation per cell may be
proportional to the cell’s volume, and we reflect this in the weight
of each node in our model. Table 2(a) shows an unstructured mesh
application that performs a Monte Carlo algorithm on its mesh. In
this case, the work performed is proportional to the number of sam-
ples in each mesh cell, so we use the sample count as the node
weight. Per our model, communication operations between neigh-
boring grid cells are shown as edges.

Molecular Dynamics. In classical molecular dynamics applica-
tions and other N-body simulations, each individual body is a unit
of work. Edges reflect the simulated neighborhood of the bodies:
each body is connected to others within a cutoff radius (i.e., those
with which it interacts), as illustrated in Table 2(b). As we discuss
in Section 7.1, we can select from several models for computation
per work unit. Simple models assume that the work per body is
constant, while others reflect the density of the body’s simulated
neighborhood.

Empirical Model. Other applications, such as the dislocation dy-
namics code ParaDiS [8], use empirical models to anticipate com-
putation per unit of work. An application developer can construct
this type of model by placing timers around important regions of
computation regions. Table 2(c) shows how ad hoc placement of
timers may omit important load constituents.

5. Modeling the Cost of Load Balancing
In this section, we use our abstract graph-based load model to eval-
uate the cost of balancing for two common load balancing algo-

rithms for physical simulations. Our cost model can be used to se-
lect the most efficient algorithm for particular imbalance scenarios.

5.1 Types of Load Balancing Algorithms
Global Algorithms. A global balancing algorithm [12, 26, 34]
takes information about the load of all tasks in the parallel appli-
cation and decides how to redistribute load evenly in a single step.
Global decisions can be costly, as sequential implementations must
process data for an entire parallel system, and parallel implemen-
tations may require excessive data movement. However, if the cost
of balancing is not high, global algorithms may balance load in a
single step, and local minimum and maximum loads are handled
correctly.

Diffusive Algorithms. A diffusive balancing algorithm [9, 10]
performs local corrections at each step, and only moves work units
within a local neighborhood in the logical simulation topology. Dif-
fusive algorithms may take many steps to rectify a large imbalance,
because load can only move a limited distance in the simulation
space. However, diffusive algorithms are scalable because they only
require local information, and data movements can be mapped to
perform well on high diameter mesh and torus networks used in
the largest machines, because they reward communication locality.

Although we do not investigate them in this paper, our method-
ology can apply to other types of balancing algorithms. Hybrid
balancing algorithms use a global scheme to correct drastic im-
balances and a diffusion scheme to avoid subsequent local imbal-
ances. Hierarchical balancing algorithms apply some balancing
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Algorithm 5.1 Diffusion algorithm [10]
Input. Li ← load of process i

Di ← neighborhood of process i, defined in Load Model graph
Lij ← load of process j ∈ Di

γ ← coefficient for how much load can be moved in one timestep
∆Li ← change in load of process i from prev. to curr. iteration
steps← 0

1: All processes in parallel do
2: while imbalance > threshold do
3: Li = Li +

∑
j∈Di

γ(Li − Lij)

4: steps++
5: end while

algorithm to a hierarchy of process partitions, using divide-and-
conquer to reduce the complexity of the algorithm.

5.2 Cost Model for Load Balancing Algorithms
In this section we develop a cost model that accounts for the re-
balancing characteristics of diffusive and global algorithms in the
context of our abstract load graph. Application developers typically
choose balancers based on their intuitions about the scalability of
particular algorithms. For example, one might expect the cost of a
global balancing scheme to be higher than that of a diffusive algo-
rithm at scale because the time required for an immediate rebalance
outweighs the amortized cost of local diffusive balancing. Our cost
model allows us to validate these intuitions and to select the most
efficient algorithm quantitatively.

The cost of a load balancing algorithm is the combined cost of
making a load balancing decision and the time required for moving
data to redistribute work load:

CBalAlgo = CLbDecision + CDataMvmt (5)

where BalAlgo can be either global or diffusion. Additionally,
load balancers that take several steps to bring the application to a
balanced state incur the cost of running the application in an imbal-
anced state during those steps. To provide an accurate comparison
of the costs of global and diffusive load balancing methods, we de-
fine the total cost of a load balancer as the application time required
to perform these steps while using it.

We define the number of steps to converge (steps) of a diffusion-
like load balancing scheme as the number of iterations required to
converge to a balanced load distribution. Given a load balance al-
gorithm, we need a way to estimate how many steps it will take
before converging. To do this, we apply Algorithm 5.1, using our
topology-aware model of the initial load balance distribution as in-
put. The algorithm simulates the movement of load through the
topology of the application, using any constraints defined for par-
ticular balancers. Specifically, we define a coefficient γ to model
the amount of load that can be moved in one time step. Our tech-
nique accounts for local minima and maxima because it moves the
simulated load through the simulated network as the actual diffu-
sive algorithm would.

We can estimate steps of a diffusion algorithm using this simu-
lation much more quickly than we can perform the actual diffusion.
Further, we can evaluate its cost without perturbing the application.
If the simulation predicts that diffusion will take too long, we can
use a different load balancing algorithm such as a global load bal-
ancing scheme.

We define the amount of data that a diffusion algorithm moves
as the sum of the data moved in each of its steps:

DataMoved =

steps∑
s=0

procs∑
i=0

∑
j∈Di

γ(Li − Lij) (6)

We calculate the data movement simultaneously with our conver-
gence simulation. As discussed in Section 3, the data movement
costs of a diffusion scheme depend on the topological relationship
of the load, which we model through iterative simulation.

We compute the total time the application takes when load
balancing via a diffusion algorithm as:

AppT imediffusion =

steps∑
i=0

(Cdiffusioni + Lmaxi) (7)

whereLmaxi is the maximum process load at step i, andCdiffusioni

is the cost of the diffusion algorithm at step i from Equation 5.
Lmaxi to accounts for the time lost due to imbalance before the
algorithm has completely converged.

Let α be a function of the step index i describing the amount by
which a diffusion algorithm reduces Lmaxi . This function can be
defined to reflect the behavior of the specific application or deduced
from previous runs, and could be constant or time-varying, e.g. a
compound rate. We can approximate the total application time for
a diffusion scheme as follows:

AppT imediffusion ≈ steps× Cdiffusion +

steps∑
i=0

α(i)× Lmax

(8)
For a global scheme, we compute the total application time as:

AppT imeglobal = Cglobal +

steps∑
i=0

Lmaxi (9)

where Cglobal is the cost of the global balancing algorithm, from
Equation 5. For comparison purposes, we assume that the global
load balancing algorithm is invoked only once during the time that
the diffusion algorithm steps to reach overall load balance.

The above equations assume that, once balanced, the application
does not again become imbalanced. In reality, physics and other
effects in the simulated domain may effect the load. For many
applications, we can model this using a simple rate.

Let β be the dual of α: a function of i describing the amount
the application becomes imbalanced on step i. Similarly to α, β
can be specified for a particular application or problem set. We
approximate the application time by:

AppT imeglobal ≈ Cglobal +

steps∑
i=0

β(i)× Lmax (10)

where Lmax is the maximum process load immediately after the
the global balancing algorithm completes. When β(i) is large, load
diverges quickly after global balancing steps, and the lowest cost
option may be a hybrid algorithm. This will apply a global balancer
when drastic changes are necessary and it will apply a diffusion
scheme periodically to keep more modest imbalances in check.
The cost of this hybrid algorithm can be assessed by combining
the above equations. Our cost model would allow us to adjust the
frequency with which each is applied.

6. Applications
To evaluate our load and cost models, we conducted experiments
with two large-scale scientific applications, ddcMD and ParaDiS.
Here, we describe the applications, their data models, and their
associated load balancing algorithms.

6.1 ddcMD
ddcMD [11, 29] is a highly optimized molecular dynamics applica-
tion that has twice won the Gordon Bell prize for high performance
computing [15, 30]. It is written in C and uses the MPI library
for communication between processors. In the ddcMD model, each
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process owns a subset of the simulated particles and maintains lists
of other particles with which its particles interact.

ci

ri

(a) ddcMD.

z 

x 

y 

(b) ParaDiS.

Figure 2. Domain decomposition in ddcMD and ParaDiS.

To allocate particles to processes, ddcMD uses a Voronoi do-
main decomposition. That is, each process is assigned a point as its
center, and it then “owns” the particles that are nearer to its center
than any other. A Voronoi cell is the set of all points nearest to a
particular center. Figure 2(a) shows a sample decomposition, with
cells outlined in black and with particles shown in red. ddcMD also
maintains a bounding sphere around its cell, where the sphere is de-
fined by a radius calculated as the maximum distance of any atom
in the domain to its center.

During execution, atoms owned by a process may move outside
of their cell. When this happens, ddcMD uses a built-in diffusion
load balancer that uses a load particle density gradient calculation
to reassign load. The balancer does this by moving the Voronoi
centers so that the walls of the Voronoi cells shift towards regions of
greater density. Voronoi centers are limited in how much closer to
a neighboring cell they can move, and the decompositions possible
with this scheme are limited by Voronoi constraints on the shape
of cells. To represent work units to the load balancer, ddcMD uses
three application-specific models:

1. Molecules: number of particles (molecules) per process;
2. Barriers: time each process spends outside of barriers;
3. Forces: time spent calculating interactions on each process.

For our global load balancing algorithm, we implemented a
point-centered domain decomposition method developed by Ko-
radi [19]. At each step, this algorithm calculates a bias bi for each
domain i. When the bias increases, the domain radius and volume
increase. Likewise when the bias decreases, radius and volume be-
come smaller. We assign each atom (with position vector x) to the
domain that satisfies:

|x− ci|2 − bi = minimal, (11)

where ci is the center of domain i, and we calculate the new centers
as the center of gravity for the atoms in each cell.

Although the Koradi algorithm is diffusive, we can run its steps
independently of the application execution until it converges. Our
implementation therefore treats this algorithm as a global method,
and only applies the final center positions to the application. We
further optimize the algorithm by parallelizing it and executing it
on a sample of the atoms rather than the complete set.

In our experiments, we use a range of decompositions that
exhibit different load balance properties by varying the placement
of Voronoi cell centers. We evaluate all three models in Section 7.1,
as well as the different load distributions and the degree of difficulty
in balancing them in Section 7.2.

We used two problem sets for ddcMD, a nanowire simulation
and a Condensation simulation. The nanowire simulation is a fi-
nite system of 133,280 Fe atoms, where the imbalance is caused by

the uneven partitioning of the densely populated cylindrical body
surrounded by vacuum. Atom interaction is modeled with EAM
potentials. We ran the Nanowire problem on 64 processes. The
condensation simulation is a Lennard-Jones condensation problem
with 2.5e+6 particles and the interactions modeled with Lennard-
Jones potentials [17], where the imbalance is caused by condensa-
tion droplets forming in some of the simulated domains. We ran the
condensation simulation on 512 processes.

6.2 ParaDiS
ParaDiS [8] is a large-scale dislocation dynamics simulation used
to study the fundamental mechanisms of plasticity. It is written pri-
marily in C and uses MPI for communication between processors.

ParaDiS simulations grow in size as more time steps are exe-
cuted. As such, the domain of the application is spatially heteroge-
neous, and the domain decomposition is recalculated periodically
in order to rebalance the workload.

ParaDiS uses a 3-dimensional recursive sectioning decomposi-
tion that first segments the domain in the X direction, then in the Y
direction within X slabs, and finally in the Z direction within XY
slabs. Figure 2(b) illustrates the recursive sectioning decomposi-
tion.

ParaDiS uses an empirical model as an input to its load bal-
ancing algorithm. The application developers estimate load using
timing calipers around the computation they deem most important
for load balance. Data from this empirical model is then given to
the recursive sectioning balancer as input. The balancer then ad-
justs work per process by shifting the boundaries of the sections.
The magnitude of a shift is constrained by the size of neighboring
domains, and the balancer will not move a boundary past the end
of its neighbors. This constraint makes the ParaDiS balancer a dif-
fusion algorithm. For our experiments, we vary the distributions of
the domain by varying the xyz decomposition of the domain such
that x ∗ y ∗ z = nProcs.

We used a highly dynamic crystal simulation input set for Par-
aDiS, with 1M degrees of freedom at the beginning of the simula-
tion growing to 1.1M degrees of freedom by the end of the run. We
ran this simulation on 128 processes.

7. Evaluation
We conducted our experiments on two large scale clusters and
a BlueGene/P system. For all ParaDiS experiments, we used a
Linux cluster that has 800 compute nodes, each with four quad-
core 2.3 GHz AMD Opteron processors, connected by Infiniband.
We used a similar cluster that has 1,072 compute nodes, each
with four dual-core 2.4 GHz AMD Opteron processors connected
by an Infiniband interconnect for all ddcMD runs in Section 7.1.
On both Linux systems, we use gcc 4.1.2 and MVAPICH v0.99
for the MPI implementation. We used a BlueGene/P system with
1,024 compute nodes with 4 32-bit PPC450d (850MHz) cores each
and 64 32-bit PPC450d I/O nodes for all ddcMD experiments in
Section 7.2. On this system, we use gcc 4.1.2 for our measurement
framework and compile ddcMD with xlC 9.

To validate load models, we measure the actual work per pro-
cess, using Libra [13], a scalable load balance measurement frame-
work for SPMD codes. Libra measures the time spent in specific
regions of an application per time step using the effort model. In
this model, time steps, or progress steps, model each step of the
synchronous parallel computation, and fine-grained effort regions
within these steps model different phases of computation.

We have extended Libra’s effort model so that it can be used
as input to our load model. We have added an interface that allows
us to query effort (load) information during execution. Using this
functionality, we are able to measure the computational load on
each process by summing the time spent in all effort regions. We
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Figure 3. Evaluating three ddcMD models on a range of problems in ddcMD.
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Figure 4. Evaluating ParaDiS model on a
range of problems in ParaDiS.

use this as an input to construct an abstract load graph, and we use
this graph to compare against abstract load graphs constructed from
application load models. This allows us to validate application load
models against complete empirical measurements.

We integrate Libra with the rest of our load model infrastruc-
ture using PNMPI [27]. This MPI tool infrastructure supports stack-
ing of multiple independent tools that use the MPI profiling in-
terface [6], in our case of Libra and our load model component.
PNMPI also supports direct communication among tools, which
we exploit to exchange both topology and performance informa-
tion. This mechanism enables a separation of the two components
in our system, resulting in a lighter weight, more modular, extensi-
ble system. Our tool stack imposes only 3% overhead on average,
making any perturbation of application behavior insignificant.

7.1 Evaluating Application Models
In this section, we evaluate the quality of ad hoc, developer-
provided application load models by comparing them with mod-
els measured empirically using Libra. To quantitatively measure
the quality of the models, we measure the accuracy with which
application models capture the true load imbalance on particular
timesteps. We also conduct more in-depth validation by examining
how well these metrics capture the statistical moments of the true
load distribution, as defined in Section 3.

For additional analysis, we validate application models with a
rank correlation metric. Rank correlation measures how accurately
the model ranks each process’s load relative to the of other pro-
cesses. We calculate rank correlation r of process loads between

the application model M and the actual load L as:

r =

n∑
i=0

(mi − m̄)(li − l̄)√√√√ n∑
i=0

(mi − m̄)2
n∑

i=0

(li − l̄)2
(12)

wheremi and li are ranks for the raw scores for the load on process
i and m̄ and l̄ are the scores for the mean load on all processes in
models M and L. To accommodate tied ranks correctly, we use
Pearson’s correlation coefficient [22]. We now apply our model
evaluation methodology to ddcMD and ParaDiS.

Table 3. RMSE for plots in Figure 3.
Molecules Barriers Forces

imbalance 15.917 25.769 16.095
kurtosis 0.444 0.079 0.057
rank corr. 0.138 0.008 0.007

Figure 3(a) demonstrates how well the three ddcMD mod-
els capture the imbalance present in the problem. Table 3 shows
root mean squared error (RMSE) of the statistical moments cal-
culated over all of our experiments. Models based on the number
of molecules and force computation overestimate the imbalance
in the system, while the model based on execution time excluding
time spent at barriers underestimates the imbalance. Underesti-
mating the imbalance leads to slower imbalance correction with a
diffusion scheme because it is less aggressive than necessary. Al-
ternately, overestimation pushes the limits of how much the load
can be redistributed at each time step, and therefore converges as
fast as a scheme that accurately estimates load, so long as the over-
estimation correctly captures the relative loads.

7 2011/8/19



Load on each Process Imbal. Steps Diffus. Global

(a)
 0
 1
 2
 3

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15

Lo
ad

1170.6 4 1183.4 543.6

(b)
 0
 1
 2
 3

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15

Lo
ad

1732.4 77 1061.5 828.8

(c)
 0
 1
 2
 3

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
Lo

ad

1406.9 30 1039.4 636.7

(d)
 0
 1
 2
 3

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15

Lo
ad
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Table 4. Costs of balancing ddcMD nanowire simulation (in sec-
onds).

Figure 3(b) shows how the three ddcMD models capture the
kurtosis of the load distributions for each run, with corresponding
RMSE shown in Table 3. The model based on the number of
molecules does most poorly, because a large part of the imbalance
comes from imbalanced neighbor communication, which the model
omits.

Figure 3(c) shows the rank correlation between the modeled and
measured distributions for each of our test cases, with correspond-
ing RMSE shown in Table 3. Again, models based on time and
force computation detect the outliers fairly well, while the model
based solely on the number of particles does worse.

Overall, based on the above analysis, we expect the model based
on the force computation to be the most accurate and therefore to
be the most suitable for use as input to the diffusion mechanism.
To validate our conclusions, Figure 3(d) shows the steps to con-
verge when the diffusion algorithm uses the three models as in-
put. We use a threshold of 12% imbalance because, as mentioned,
ddcMD’s best achievable balance is limited by constraints on the
shape of Voronoi cells in its domain decomposition. As predicted,
the model based on the force calculation is the most accurate and
thus corrects the load most quickly. The model based on the num-
ber of molecules outperforms the Barrier model, in part because the
former overestimates the imbalance making the diffusion scheme
take more drastic measures and arrive at a balanced state sooner.

Figure 4(a) the accuracy with which the ParaDiS application
model represents its load imbalance. Figure 4(b) shows the rank
correlation of actual and modeled load distributions. The figures
show that the model is somewhat inaccurate, which we suspected
because its empirical model does measure certain major phases of
the computation that are captured by Libra. The developers only
measure the main force computation. Our load model in conjunc-
tion with Libra’s performance attribution show that this fails to
capture the behavior of communication, collision detection, and
remesh phases. When we compare ParaDiS’s calipers to Libra’s
measurements of only the force computation, the model is quite ac-
curate. Depending on the problem, these omitted regions comprise
up to 15% of the execution time. We have communicated our find-
ings to the application developers, and intend to work with them to
optimize how the application reports load to the load balancer as
well as to our load model.

7.2 Cost Model Case Study
In this Section, we evaluate our model’s effectiveness for modeling
the efficiency of load balancing algorithms for various imbalance
scenarios. We use the cost model defined in Section 5 to explain the

observed performance of the global and diffusive load balancing
schemes in ddcMD.

The first set of results show data from the ddcMD nanowire
simulation running on 64 processors organized as a 4x16 process
grid. Table 4 shows the relative load in the processor grid in the be-
ginning of the simulation, with darker sections representing higher
load and lighter blue representing lower load for the particular pro-
cess. For each of these, we show the execution time without load
balancing, the number of steps that Algorithm 5.1 predicts the dif-
fusive algorithm will take (our metric for the difficulty of correcting
the imbalance by diffusion), the execution time with the diffusion
algorithm, and the execution time using the global algorithm. We
run the nanowire simulation for 200 time steps. The diffusion al-
gorithm has a cost (as defined in Equation 5) of 0.01 seconds per
simulation step. The global load balancing method incurs a one-
time cost of 3.5 seconds.

Example (a) in Table 4 demonstrates that diffusion can increase
the execution time of the application with an almost-balanced case
because it fails to find and improving the imbalance, but still in-
curs the cost of running the balancer. In addition to correcting the
load, the global algorithm can achieve a domain decomposition that
minimizes the necessary communication, something the diffusive
algorithm does not do. In this case, failing to rebalance means a
2.15 times longer execution. Similarly, choosing the wrong load
balancing algorithm increases the run time by 2.17 times. The re-
maining examples in Table 4 demonstrates that although diffusion
can (eventually) decrease the computation cost of the application
runs, the global algorithm is always the better choice for this dd-
cMD input because the diffusion algorithm takes too many steps to
converge as demonstrated in Equation 8.

We further demonstrate the costs of global and diffusive schemes
on 800 steps of the ddcMD condensation simulation in Figures 5
and 6. The cost of balancing algorithms themselves, as defined in
Equation 5, are higher for this simulation because of the large scope
of the problem. They are 0.25-0.47 seconds per step for diffusion
and 95 seconds overall for the global scheme. Our cost model in
Section 5 captures the additional costs of the balancing algorithms
in Equation 5: the runtime of the application depends on the rate
at which these load balancing schemes can correct the imbalance
(or how long the application continues to run in imbalanced state)
and the rate at which the application becomes imbalanced again if
balanced only at the beginning of the simulation. Figure 5 demon-
strates the maximum loads of processes at a given timestep in the
simulation when using a global load balancing scheme and diffu-
sion. While the maximum load shown in Figure 5 limits the length
of each timestep in the simulation, the total runtime of the simula-
tion is the integral of the curve. We list these totals Figure 6.

The initial decomposition of the problem in Figure 5(a) is rel-
atively quick to diffuse as predicted by our steps metric from Al-
gorithm 5.1 that Figure 6, row (a) shows. Figure 5(a) demonstrates
that the maximum process load decreases rapidly with the diffusion
algorithm, i.e., α(i) in Equation 8 is high. At the same time, the
load does not become further imbalanced as the simulation time
progresses, which means that β(i) in Equation 10 is close to 1.
Thus, we expect the overall cost of diffusion to be lower in this
case than that of a global method, as Figure 6, row (a) shows.

The decomposition that Figure 5(b) shows is difficult to diffuse
as predicted by the steps metric from Algorithm 5.1 that Figure 6,
row (b) shows. Figure 5(b) demonstrates that diffusion requires
over 300 steps to reduce the load of the maximum process to the
average load, i.e., α in Equation 8 is high. As in case (a), the
load does not become further imbalanced as the simulation time
progresses; so β in Equation 10 is again low. We expect the overall
cost of diffusion to be higher in this case than that of a global
method, as Figure 6, row (b) shows.
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Figure 5. Lmax for diffusion and a global scheme in different imbalance scenarios.

Imba- Diffusion Global
lan- steps cost exec. total exec.
ced (5.1) /step time cost time

(a) 5104.26 71 .025 4090.54 95 5115.87

(b) 6444.54 344 .047 5231.01 95 5063.30

Figure 6. Costs of balancing for ddcMD con-
densation simulation (in seconds).

Generally, a global method is preferred when the imbalance
would take many steps to correct using diffusion, and when the
cost of the global method is less than that of continuing to run the
simulation in an imbalanced state. More precise guidelines than
these are both application dependent and problem dependent. Our
future work will include deriving the coefficients for our models
by sufficiently sampling the space and using available modeling
techniques [20]. However, predictive models are beyond the scope
of this paper. Overall, understanding the costs of the load balancing
algorithms is important in selecting the appropriate one for each
imbalance scenario.

8. Related Work
Previous work has focused on load measurement and finding
sources of imbalance. Efficient, scalable measurement of load [16,
32] identifies whether load imbalance is a problem for a particu-
lar application. Imbalance attribution [31] provides insight into the
source code locations that cause imbalance. Our load model takes
advantage of existing tools [13] and their measurements, and com-
bines them with knowledge of the simulated application domain
topology. This allows better understanding of computational load
in terms of an application’s particular work units.

Many applications that suffer from load imbalance implement
their own load balancing algorithms. The algorithms are usually
tightly coupled with application data structures and cannot be used
outside of the application. Some rely heavily on geometric decom-
position of the domain (i.e., hierarchical recursive bisection [8]).
AMR applications can order the boxes according to their spatial lo-
cation by placing a Morton space filling curve [21] through the box
centroids to increase the likelihood that neighboring patches reside
on the same process after load balancing [36]. N-body simulations
either explicitly assign bodies to processes or indirectly assign bod-
ies by assigning subspaces to processes using orthogonal recursive
bisection [4], oct-trees [28, 35], and fractiling [2]. In all of these
cases, the application developers must construct an ad hoc model
of per-task load. These estimates are frequently inaccurate because
they omit a significant subset of computational costs, or they fail to
consider the platform. Our load model enables evaluation of the ap-
plicaton models, therefore ensuring that the computation costs are
assigned appropriately prior to being used to correct the imbalance.

Another common approach to load balancing uses suites of par-
titioners that work with mesh or graph representations of computa-
tion in the applications (e.g., ParMetis [26], Jostle [33], Zoltan [12],
DRAMA [3], PLUM [23]). Users of these partitioners must supply
information about the current state of the application and the sys-
tem, which again must be application specific. As a result, they
may provide inaccurate or incomplete information. Further, parti-
tioners do not have sufficient information to decide when to load
balance, placing further burden on the application. Our load model

enables actionable evaluation of load imbalance, and can poten-
tially help an application to decide when to rebalance and whether
the repartitioner is a good balancing algorithm for a particular type
of imbalance.

Charm++ [1, 5, 7, 18, 37] implements a measurement-based
load balancing framework that records the work represented by
objects and object-to-object communication patterns. Based on
the RTS measurements, the load balancer may migrate the ob-
jects between process queues. While this approach may work well
when the application developers can decompose their computation
into independent objects, many applications cannot. In other cases,
Charm++ can overdecompose the domain [24] and then balance
load by moving virtual processors from overloaded physical pro-
cessors to the underloaded ones. This approach can impose extra
communication overhead for tightly coupled applications. In more
recent work, Charm++ explores hierarchical approaches to load
balancing [14]. Our model’s ability to evaluate the load in an ac-
tionable manner could therefore provide a sound basis to choose
the best level at which to balance the load.

9. Conclusions
We have presented a novel load model that captures an application’s
topology, load, and execution time. Our load model establishes
a mapping between application elements and computation costs
while maintaining information on dependencies between model el-
ements. Our load model enables an application-independent repre-
sentation of load distribution and can form the basis for a new gen-
eration of generic, yet application- and topology-aware load bal-
ance tools. We have shown that our topology-aware approach over-
comes deficiencies of conventional statistical load metrics, which
fail to represent topology information. Using our topology-aware
load model we have provided a new set of metrics characterize load
distribution more accurately.

We have demonstrated the effectiveness and versatility of our
load model on several case studies. We have provided a mecha-
nism to evaluate and contrast several application-provided models.
We have used our topology-aware load model to analyze the load
imbalance in the application at a given point in time. Finally, we
evaluated the ability of available load balance schemes to correct
imbalances. In all experiments, adding the topology information to
the load data was critical to understanding and analyzing the appli-
cation’s load behavior.
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